Usfertilizer summarized the estimated county level data from USGS of USA and provided a clean version using Tidyverse.
Please note that USGS does not endorse this package. Also data from 1986 is not available for now.
Install the stable version via CRAN, just run:
You can also install the package via my Github Repository.
The dataset, named by us_fertilizer_county, contains 625580 observations and 11 variables. Details are available by using ?us_fertilizer_county
.
glimpse(us_fertilizer_county)
#> Observations: 625,580
#> Variables: 12
#> $ FIPS <chr> "01001", "01003", "01005", "01007", "01009", "01011...
#> $ State <chr> "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL...
#> $ County <chr> "Autauga", "Baldwin", "Barbour", "Bibb", "Blount", ...
#> $ ALAND <dbl> 1539582278, 4117521611, 2291818968, 1612480789, 166...
#> $ AWATER <dbl> 25775735, 1133190229, 50864716, 9289057, 15157440, ...
#> $ INTPTLAT <dbl> 32.53638, 30.65922, 31.87067, 33.01589, 33.97745, 3...
#> $ INTPTLONG <dbl> -86.64449, -87.74607, -85.40546, -87.12715, -86.567...
#> $ Quantity <dbl> 1580225, 6524369, 2412372, 304592, 1825118, 767573,...
#> $ Year <chr> "1987", "1987", "1987", "1987", "1987", "1987", "19...
#> $ Nutrient <chr> "N", "N", "N", "N", "N", "N", "N", "N", "N", "N", "...
#> $ Farm.Type <chr> "farm", "farm", "farm", "farm", "farm", "farm", "fa...
#> $ Input.Type <chr> "Fertilizer", "Fertilizer", "Fertilizer", "Fertiliz...
# plot the top 10 nitrogen application in year 2008.
# Reorder to make the plot more cleanner.
year_plot = 2008
us_fertilizer_county %>%
filter(Nutrient == "N" & Year == year_plot & Input.Type == "Fertilizer" ) %>%
top_n(10, Quantity) %>%
ggplot(aes(x=reorder(paste(County,State, sep = ","), Quantity), Quantity, fill = Quantity))+
scale_fill_gradient(low = "blue", high = "darkblue")+
geom_col()+
ggtitle(paste("Top 10 counties with most fertilizer application in the year of", year_plot)) +
scale_y_continuous(name = "Nitrogen from commecial fertilization (kg)")+
scale_x_discrete(name = "Counties")+
coord_flip()+
theme_bw()
# plot the top 10 states with P application in year 1980.
# Reorder to make the plot more cleanner.
year_plot = 1980
us_fertilizer_county %>%
filter(Nutrient == "P" & Year == 1980 & Input.Type == "Fertilizer") %>%
group_by(State) %>%
summarise(p_application = sum(Quantity)) %>%
as.data.frame() %>%
top_n(10, p_application) %>%
ggplot(aes(x=reorder(State, p_application), p_application))+
scale_fill_gradient(low = "blue", high = "darkblue")+
geom_col()+
ggtitle(paste("Top 10 States with most Phosphrus application in the year of", year_plot)) +
scale_y_continuous(name = "Phosphrus from commecial fertilizer (kg)")+
scale_x_discrete(name = "States")+
theme_bw()+
coord_flip()
year_plot = seq(1945, 2010, 1)
states = c("NC","SC")
us_fertilizer_county %>%
filter(State %in% states & Year %in% year_plot &
Farm.Type == "farm" & Input.Type == "Fertilizer") %>%
group_by(State, Year, Nutrient) %>%
summarise(Quantity = sum(Quantity, na.rm = T)) %>%
ggplot(aes(x = as.numeric(Year), y = Quantity, color=State)) +
geom_point() +
geom_line()+
scale_x_continuous(name = "Year")+
scale_y_continuous(name = "Nutrient input quantity (kg)")+
facet_wrap(~Nutrient, scales = "free", ncol = 2)+
ggtitle("Estimated nutrient inputs into arable lands by commercial fertilizer\nfrom 1945 to 2010 in Carolinas")+
theme_bw()
us_fertilizer_county %>%
filter(State %in% states & Year %in% year_plot &
Farm.Type == "farm" & Nutrient == "N") %>%
group_by(State, Year, Input.Type) %>%
summarise(Quantity = sum(Quantity, na.rm = T)) %>%
ggplot(aes(x = as.numeric(Year), y = Quantity, color=Input.Type)) +
geom_point() +
geom_line()+
scale_x_continuous(name = "Year")+
scale_y_continuous(name = "Nutrient input quantity (kg)")+
facet_wrap(~State, scales = "free", ncol = 2)+
ggtitle("Estimated nutrient inputs into arable lands by commercial fertilizer and manure\nfrom 1945 to 2012 in Carolinas")+
theme_bw()
Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.
Comments and Questions.
If you have any problems or questions, feel free to open an issue here.